જો સમીકરણ $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ ને ઓછામાં ઓછો એક વાસ્તવિક ઉકેલ હોય તો $k$ ની બધી પૂર્ણાક સંખ્યાઓનો સરવાળો મેળવો 

  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $6$

Similar Questions

જો $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, તો $\theta = $

જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ = 

સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?

સમીકરણ $\sin \theta = \sin \alpha $ અને $\cos \theta = \cos \alpha $ નું સમાધાન કરે તેવો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

  • [IIT 1971]

જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.