જો સમીકરણ $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ ને ઓછામાં ઓછો એક વાસ્તવિક ઉકેલ હોય તો $k$ ની બધી પૂર્ણાક સંખ્યાઓનો સરવાળો મેળવો
$2$
$3$
$5$
$6$
જો $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, તો $\theta = $
જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?
સમીકરણ $\sin \theta = \sin \alpha $ અને $\cos \theta = \cos \alpha $ નું સમાધાન કરે તેવો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.